Entrance Exam of Advanced Calculus (2 pages)
Total: 100 pts

1. Let \(f(x) = x^2, \forall x \in \mathbb{R} \). Use the \(\epsilon - \delta \) argument to prove that \(f \) is a continuous function on \(\mathbb{R} \). Hint: \(\lim_{x \to 0} f(x) = 1 \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0 \) such that \(|f(x) - 1| < \epsilon \) for \(|x| < \delta \). (5 pt)

2. For \(f : [0, 1] \to \mathbb{R} \) is a bounded and increasing function, we may define

\[
D_f = \{ x \in [0, 1] : \lim_{t \to x^+} f(t) \neq f(x) \}.
\]

(i) Is there a bounded and increasing function \(f \) such that the associated set \(D_f \) has infinitely many points? If yes, give an example. Otherwise, prove your answer. (5 pt)

(ii) Let \(f : [0, 1] \to \mathbb{R} \) be a bounded and increasing function. Suppose that \(\limsup_{t \to x^+} f(t) - \liminf_{t \to x^+} f(t) \geq \frac{1}{2} \), \(\forall x \in D_f \). Can \(f \) be Riemann integrable? Prove or disprove your answer. (10 pt)

3. Let \(E \) be a bounded subset of \(\mathbb{R}^n \) and \(f : E \to \mathbb{R} \) be a bounded and continuous function.

(i) Can \(f \) have a minimal point in \(E \)? If yes, prove it. If no, add an extra condition on \(E \) such that \(f \) has a minimal point in \(E \). Prove your statement. (10 pt)

(ii) Can \(f \) be uniformly continuous? If yes, prove it. If no, add an extra condition on \(E \) such that \(f \) is uniformly continuous on \(E \). Prove your statement. (10 pt)

4. Let \(\{f_n\} \) be a sequence of differentiable real-valued functions on \((0, 1) \) such that \(\{f_n\} \) converges to \(f \) uniformly on \((0, 1) \), where \(f \) is differentiable on \((0, 1) \). Can \(\{f_n\} \) converge to \(f' \) pointwise on \((0, 1) \)? Here \(f' \) means the differentiation. Prove or disprove your answer. (10 pt)
5. Let $f : A \rightarrow \mathbb{R}$ be a continuous function such that the partial derivatives f_x and f_y exists on A, where $A = (0, 1) \times (0, 1)$.

(i) Can f be differentiable on A? Prove or disprove your answer. (5 pt)

(ii) Suppose that f_x and f_y are continuous on A. Can f be differentiable on A? Prove or disprove your answer. (10 pt)

6. Let $f(x, y) = \sin x \cos y$, $\forall x, y \in E$, where $E = (-\pi, 0) \cup (0, \pi)$. Can f have critical points in its domain $E \times E$? If yes, find them and determine whether they are local minimum, local maximum or saddle points. If no, modify the set E such that f has local minimum, local maximum and saddle points in its domain $E \times E$. (10 pt)

7. Calculate the following integrations.

(i) $\int_0^\infty e^{-x^2} \, dx = ?$ (10 pt)

(ii) $\int_0^\infty x^2 e^{-x^2} \, dx = ?$ (5 pt)

8. Let $f : B \rightarrow \mathbb{R}$ be a smooth function, where $B = \{(x, y) : x^2 + y^2 < 1\}$. Suppose that $f_{xx} + f_{yy} = 0$ in B, where f_{xx} and f_{yy} are the 2nd order partial derivatives of f in x and y directions, respectively. Can $\int_B f(x, y) \, dx \, dy = \pi f(0)$? Prove or disprove your answer. (10 pt)