1. (10 points) Let

\[f(x) = \frac{1}{\sin x} - \frac{1}{x}. \]

Find \(\lim_{x \to 0} f(x) \).

2. (10 points) Compute the area of the infinite region between the curve \(\frac{1}{1+x^2} \) and the \(x \)-axis.

3. (15 points) Find the absolute maximum and minimum values of \(f(x) = x^{2/3} \) on the interval \(-8 \leq x \leq 27\).

4. Determine whether the following series converges or diverges.
 a. (10 points)

 \[\sum_{n=1}^{\infty} \frac{1}{n} \]

 b. (15 points)

 \[\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} \]

5. (10 points) Prove or disprove the following statement. If \(A \) and \(B \) are two \(n \times n \) matrices with \(n > 1 \), then \(\det(A + B) = \det(A) + \det(B) \).

6. (10 points) Let \(u \) be an \(n \times 1 \) nonzero vector, where \(n > 1 \) and \(u^T \) be the transpose of \(u \), find the eigenvalues of the matrix \(uu^T \) and its determinant.

7. (20 points) Find two variables \(u \) and \(v \) and two values \(\lambda_1 \) and \(\lambda_2 \) such that

\[5x^2 - 2xy + 5y^2 = 4 \]

can be rewritten as

\[\lambda_1 u^2 + \lambda_2 v^2 = 4, \]

where \(u = ax + by \) and \(v = cx + dy \) with \(a, b, c, d \in \mathbb{R} \).