1. (10%) Suppose that, on average, a post office handles 10,000 letters a day with a variance of 2000. What can be said about the probability that this post office will handle between 8000 and 12,000 tomorrow? [Hint: Use Chebyshev's inequality.]

2. (10%) The coefficient of the quadratic equation \(ax^2 + bx + c = 0 \) are determined by tossing a fair die three times (the first outcome is \(a \), the second one \(b \), and the third one \(c \)). Find the probability that the equation has no real roots.

3. (12%) Suppose that \(\{ E_n, \ n \geq 1 \} \) is either an increasing or a decreasing sequence of events. Show that

\[
\lim_{n \to \infty} p(E_n) = p(\lim_{n \to \infty} E_n)
\]

4. (12%) Show that if all three of \(n, N, \) and \(D \to \infty \), so that \(n/N \to 0 \), \(D/N \) converges to a small number, and \(nD/N \to \lambda \), then for all \(x \),

\[
\binom{D}{x} \binom{N-D}{n-x} \frac{e^{-\lambda} \lambda^x}{x!} \to \frac{e^{-\lambda} \lambda^x}{x!}
\]

5. (16%) Imagine a population of \(N + 1 \) urns. Urn number \(k \) contains \(k \) red, \(N - k \) white \(\{ 0, 1, \ldots, N \} \) balls. An urn is chosen at random and \(n \) random drawings are made from it, the ball drawn being replaced each time. Define

- Event A: All \(n \) balls turn out to be red,
- Event B: The \((n+1) \)st draw yields a red ball.

(a) Find \(P(A| \text{Urn } k \text{ is chosen}) \) \((k = 0, 1, \ldots, N) \).
(b) Find \(P(A) \).
(c) Find \(P(AB) \).
(d) Find \(P(B|A) \).
6. (15%) Let X_1 and X_2 be independent r.v.'s, each $N(\mu, \sigma^2)$. Let $Y = X_1 + X_2$, $Z = X_1 - X_2$. Show that Y and Z are independent r.v.'s. [Hint: Use transformations to find the joint p.d.f. of (Y, Z), and then the independence.]

7. (10%) Prove that (for any fixed $\lambda > 0$)

$$p_x (x) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!}, & x = 0, 1, 2, \ldots \\ 0, & \text{otherwise} \end{cases}$$

is a probability function.

8. (15%) The joint probability mass function of X and Y is given by

$$P (1, 0) = \frac{1}{6} \quad P (1, 1) = \frac{1}{6}$$

$$P (2, 0) = \frac{1}{6} \quad P (2, 1) = \frac{1}{3} \quad P (2, 2) = \frac{1}{6}$$

(a) Compute the conditional mass function of Y given $X=i$, $i=1,2$.

(b) Find $E(Y|X)$, $\text{VAR}(E(Y|X))$ and $E(\text{VAR}(Y|X))$.