1. (a) The position y of a particle moving along the y axis depends on the time t according to the equation $y = at - br^2$. Find the dimensions of the quantities a and b. (b) Plot a graph which represents the motion of an object moving with a constant speed. The x-axis is the time and the y-axis is the displacement.

2. (a) A system of n moles of ideal gas undergoes an isothermal process at temperature T. The initial and final volume of the system is V_i and V_f, respectively. Find the work done by this process. In your answer, you may need to use the ideal gas constant R. (b) Consider a system of n moles of ideal gas follows a free expansion process which takes the system from an initial state to a final state where the volume of the system is doubled, i.e., $V_f = 2V_i$. Find the entropy change of this system. R is the ideal gas constant.

3. A solid disk of radius r and mass m rolls down a slope from rest, as shown in the figure.

Let the angle of the slope be θ. Find (a) (3 points) the linear acceleration of the rolling disk; (b) (3 points) the frictional force between the disk and the slope; (c) (4 points) the speed of the disk at the bottom of the slope if the disk travels a distance L to reach the bottom of the slope.

4. A tank is filled with water to a height H. A hole is punched in one of the walls at a depth h below the water surface, as shown in the figure right:

(a) (3 points) Evaluate x, the distance from the base of the tank to the point at which the resulting stream strikes the floor. (b) (3 points) Could a hole be punched at another depth which would give the same range? (c) (4 points) At what depth should the hole be punched to maximize the range?

5. A spherical hollow is made in a lead sphere of radius R, such that its surface touches the outside surface of the lead sphere and passes through its center. The mass of the sphere before hollowing was M. With what force, according to the law of universal gravitation, will the hollowed lead sphere attract a small sphere of mass m, which lies a distance d from the center of the lead sphere on the straight line connecting the centers of the spheres and of the hollow?
6. (10 %)
 Please calculate the current i through the battery (a) just after S is closed (b) a long time later. [where \mathcal{E} = emf of the battery, L = inductor, R = resistor, and S = switch]

![Diagram](image)

7. (10%)
 For a charging circular plates with area A (neglecting the edge effect), the external current i that is charging the plates changes the electric field E between the plates. If, between the plates, i_d is the displacement current associated with that changing field E then show that $i_d = i$.

![Diagram](image)

8. (10%)
 If a light enters a 90° triangular prism at point P with incident angle θ and then some of it refracts at point Q with an angle of reflection of 90°. (a) What is the index of reflection of the prism in terms of θ? (b) What, numerically, is the maximum value that the index of refraction can have?

![Diagram](image)

9. (10%)
 The plastic rod of length L has the non-uniform linear charge density $\lambda = cx$, where c is a positive constant. (a) With $V = 0$ at infinity, find the electric potential at point P on the y axis. (b) Find the electric field component E_y at P.

![Diagram](image)

10. (10%)
 An electron with mass m is confined to an (one-dimensional) infinitely deep potential energy well of width L. (a) What is the normalized wave functions $\psi_n(x)$? (b) What is the quantized energies E_n?