1. (12 pts.) Find the inverse matrix of

\[A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \end{bmatrix} \]

2. (12 pts.) Consider the following \(n \times n \) tridiagonal matrix:

\[A_n = \begin{bmatrix} 1 & 1 & 0 & 0 & \cdots & \cdots & \cdots \\ -1 & 1 & 1 & 0 & 0 & \cdots & \cdots \\ 0 & -1 & 1 & 1 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & 0 -1 1 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & 0 -1 1 \end{bmatrix} \]

Find \(\det(A_n) \).

3. (12 pts.) Let \(A \) be a \(3 \times 3 \) matrix with eigenvalues -1, 0, and 1. Compute the determinant of the matrix \(A^3 + 2A^2 + 3I \) where \(I \) is the \(3 \times 3 \) identity matrix.

4. (12 pts.) Let \(A \) and \(B \) be two \(n \times n \) matrices with \(AB = BA \). If all of the eigenvalues of \(A \) are real and distinct, show that \(B \) is diagonalizable.

5. (12 pts.) Let \(A \) be an \(n \times n \) symmetric matrix, and let \(\text{Col}A \) and \(\text{Nul}A \) be the column space and null space of \(A \) respectively.
 (1) Show that \((\text{Col}A)^\perp = \text{Nul}A \).
 (2) Show that each \(x \) in \(\mathbb{R}^n \) can be written in the form \(x = y + z \), with \(y \) in \(\text{Col}A \) and \(z \) in \(\text{Nul}A \).

6. (40 pts.) True or False, with reason if true and counterexample if false.
 (1) Suppose \(u, v, w \) are nonzero vectors in \(\mathbb{R}^5 \), \(v \) is not a multiple of \(u \), and \(w \) is not a linear combination of \(u \) and \(v \). Then \(\{u, v, w\} \) is linearly independent.
 (2) If \(P \) is an invertible \(m \times m \) matrix, then \(\text{rank } PA = \text{rank } A \).
 (3) If \(A \) is row equivalent to the identity matrix \(I \), then \(A \) is diagonalizable.
 (4) A square matrix \(A \) is invertible if and only if there is a coordinate system in which the transformation \(x \rightarrow Ax \) is represented by a diagonal matrix.
 (5) If \(W \) is a subspace of \(\mathbb{R}^n \), then \(W \) and \(W^\perp \) have no vectors in common.
 (6) The equation \(Ax = b \) has a solution if and only if \(b \) is orthogonal to all solutions of the equation \(A^\top x = 0 \).
 (7) The dimension of an eigenspace of a symmetric matrix equals the multiplicity of the corresponding eigenvalue.
 (8) Every \(n \)-dimensional vector space is isomorphic to \(\mathbb{R}^n \).