Write down your answer as clear as possible, each problem is of 20 points.

1. Give a definition of upper semi-continuous (u.s.c.) functions; prove or disprove the following statements
 (a) If \(f, g \) are u.s.c. then \(f + g \) is u.s.c.
 (b) If \(\{ f_n \} \) is a sequence of non-negative u.s.c. functions so is \(\sum_{n=1}^{\infty} f_n \)

2. (a) Let \(f(x) = ax + b \), show that if \(E \) has measure \(\lambda \) then \(f(E) \) has measure \(\lambda \) a.
 (c) Let \(f(x) = x^2 + 2x \), show that if \(E \) has measure 0 so is \(f(E) \)

3. (a) Show that if \(\mu(X) < \infty, 0 < p < q < \infty \), then \(L^q \subseteq L^p \).
 (b) If \(0 < r < p < s < \infty \), show that \(L^r \cap L^s \subseteq L^p \)

4. If \(f \) is of bounded variation on \([a, b] \), show that \(\int_a^b |f'| \leq V[a, b] \). Show that if the equality holds in this inequality, then \(f \) is absolutely continuous.

5. (a) Let \(X \) be a compact metric space. Show that given any open cover \(\{ O_a \} \), there exits \(\delta > 0 \) such that any subset of diameter less than \(\delta \) is contained in some \(O_a \)
 (b) Let \(X, Y \) be metric spaces with \(X \) is compact. Show that every continuous function from \(X \) to \(Y \) is uniformly continuous.