1. (15%) Let \(f \) be a continuous function from \([0, 1]\) to \(R \). Show that
\[
\exp \left(\int_0^1 f(t) dt \right) \leq \int_0^1 \exp(f(t)) dt,
\]
where \(\exp \) is defined by
\[
\exp(x) = e^x, \quad x \in R.
\]

2. (25%) Let
\[
l_2 = \left\{ < a_n >_{n=1}^{\infty} \mid \sum_{n=1}^{\infty} |a_n|^2 < \infty, \ a_n \in R, \ n \geq 1 \right\}.
\]
Define the function \(d : l_2 \times l_2 \to R^+ \), by
\[
d(a, b) = \left(\sum_{n=1}^{\infty} |a_n - b_n|^2 \right)^{\frac{1}{2}},
\]
for all \(a, b \in l_2 \), with
\[
a = < a_n >_{n=1}^{\infty}, \quad b = < b_n >_{n=1}^{\infty}.
\]
Show that \(< l_2, d > \) is a complete metric space. Then show that it is also separable.

3. (15%) Let \(f \in L^1(R^n) \) and \(\hat{f} \) be the Fourier transform of \(f \).

 (a) Show that
 \[
 \lim_{|\xi| \to \infty} \hat{f}(\xi) = 0.
 \]

 (b) For \(g \in L^2(R^n) \), is it true that
 \[
 \lim_{|\xi| \to \infty} \hat{g}(\xi) = 0?
 \]
 You shall give the reason.

4. (15%) Let \(f, g \in C_0^\infty(R) \), and \(h \) be defined by
\[
h(x) = \int_{-\infty}^{\infty} f(x-y)g(y)dy, \quad x \in R.
\]
Show that
\[
(\partial_x h)(x) = \int_{-\infty}^{\infty} (\partial_x f)(x-y)g(y)dy, \quad x \in R.
\]

5. (30%) Let \(f \) and \(g \) be two functions from \(R \) to \(R \). Suppose \(f \) is continuous in \(R \) and \(\text{Supp } f \) is compact. Meanwhile, \(g \) is of Bounded variation in \(R \).

 (a) Show that the Riemann-Stiejes integral
 \[
 \int_{-\infty}^{\infty} f dg \text{ exists.}
 \]

 (b) Find a Borel measure \(\mu \) so that
 \[
 \int_{a}^{b} f dg = \int_{a}^{b} f du,
 \]
 where \([a, b]\) is any closed interval in \(R \) with \(a < b \).