Real Analysis

This exam contains 5 problems with a total of 100 points. Each problem costs 20 points. Do all problems and show all your work for partial credits.

1. Let \(f \) be a nonnegative function which is integrable over a compact set \(E \subset \mathbb{R}^n \). Show that given \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that for every measurable subset \(A \subset E \) with measure \(mA < \delta \) we have \(\int_A f < \varepsilon \).

2. State the Lebesgue Dominated Convergence Theorem and give an example to illustrate how to apply it.

3. Let \(f_n \) be a sequence of measurable function in \(L^\infty(E) \). Prove that \(f_n \) converges to \(f \) in \(L^\infty(E) \) if and only if there is a measure zero subset \(A \subset E \) such that \(f_n \) converges to \(f \) uniformly on \(E - A \).

4. Let \(f_n \) be a sequence of measurable function in \(L^2([0,1]) \), which converges almost everywhere to a function \(f \) in \(L^2([0,1]) \). Show that \(f_n \) converges to \(f \) in \(L^2([0,1]) \) if and only if \(\|f_n\| \to \|f\| \).

5. Prove that \(L^\infty([0,1]) \) is complete.