1. Let \(f : \mathbb{R} \to [0, \infty] \) be a measurable function and \(0 < \alpha < \infty \) be a constant. Suppose that \(\int_{\mathbb{R}} f \, dx = c, \ 0 < c < \infty \). Find
\[
\lim_{n \to \infty} \int_{\mathbb{R}} n \log[1 + (f/n)^\alpha] \, dx.
\] (20 points)

2. Suppose that \(f \) is a measurable function on \(\mathbb{R} \) and
\[
\varphi(p) = \int_{\mathbb{R}} |f|^p \, dx, \quad (0 < p < \infty).
\]
Let \(E = \{ p : \varphi(p) < \infty \} \). Assume \(\|f\|_\infty > 0 \). Prove that \(\log \varphi \) is convex in the interior of \(E \). (20 points)

3. Let \(f \in L^2(0, 2\pi) \). Is it possible to have simultaneously
\[
\int_0^\pi (f(x) - \sin x)^2 \, dx \leq 4/9
\]
and
\[
\int_0^\pi (f(x) - \cos x)^2 \, dx \leq 1/9.
\] (20 points)

4. Let \(\phi \) be a convex function on \((-\infty, \infty) \) and \(f \) be an integrable function on \([0, 1]\). Prove that
\[
\phi[\int_0^1 f(x) \, dx] \leq \int_0^1 \phi(f(x)) \, dx.
\] (20 points)

5. Let \(E \) be a measurable set of finite measure and \(\{f_n\} \) be a sequence of measurable functions defined on \(E \). Let \(f \) be a real-valued function such that for each \(x \) in \(E \) we have \(f_n(x) \to f(x) \). Prove that given \(\epsilon > 0 \) and \(\delta > 0 \), there is a measurable set \(A \subset E \) with \(mA < \delta \) and an integer \(N \) such that for all \(x \in E \setminus A \) and all \(n \geq N \),
\[
|f_n(x) - f(x)| \leq \epsilon.
\] (20 points)